Anuncio: Informamos que el acceso al chat está restringido, por tanto para poder participar te invitamos cordialmente a registrarte en el chat de nuestro blog. Nuestros administradores, moderadores, y usuarios están con la mejor de las disposiciones a ofrecerte su ayuda voluntaria. ¿Estás interesado(a)? Para registrarte sigue estas instrucciones.

Métodos Numéricos Aplicados Con Software [by Shoichiro Nakamura]

julio 03, 2012


Información Técnica
Métodos Numéricos Aplicados Con Software
Español | 4.3 Mb | PDF | 591 Pág | Autor: Shoichiro Nakamura
Publisher: Prentice Hall | 1ra Edición | ISBN-10: 968-880-263-8


Descripción
Métodos numéricos para estudiantes de ingeniería y de ciencias.

Este libro describe los métodos numéricos aplicados que aprenden los estudiantes de ingeniería y de ciencias pertenecientes a una amplia gama que abarca desde el Segundo año de la licenciatura hasta el primero del posgrado.

Los primeros nueve capítulos se basan en el material enseñado por el autor en dos cursos introductorios de métodos numéricos. Los últimos cuatro se apoyan en el material enseñado a nivel de posgrado, aunque las primeras secciones de los últimos cuatro capítulos se han escrito de manera que resultan comprensibles a los estudiantes de licenciatura de los niveles superiores.

La importancia de los métodos numéricos ha aumentado de forma drástica en la enseñanza de la Ingenieria y la Ciencia, lo cual refleja el uso actual y sin precedentes de las computadoras. Al aprender los métodos numéricos podremos:

  • Entender esquemas numéricos a fin de resolver problemas matemáticos, de ingeniería y científicos en una computadora.
  • Deducir esquemas numéricos básicos.
  • Escribir programas y resolverlos en una computadora.
  • Usar correctamente el software existente para dichos métodos.

El aprendizaje de los métodos numéricos no sólo aumenta nuestra habilidad para el uso de computadoras, también amplía la pericia matemática y la comprensión de los principios científicos básicos.

Temario

Programas, VII
Prefacio, ix
Antes de leer y usar los programas de este libro, XIII

Causas principales de errores en los métodos numéricos, 1
1.1 Introducción, 1
1.2 Series de Taylor, 1
1.3 Números en las computadoras, 5

Interpolación polinomial, 22
2.1 Introducción, 22
2.2 Interpolación lineal, 22
2.3 Formula de interpolación de LaGrange, 24
2.4 Interpolaciones de Newton hacia adelante y hacia atrás en puntos con igual separación, 32
2.5 Interpolación de Newton en puntos con separación no uniforme, 40
2.6 Interpolación con raíces de Chebyshev, 43
2.7 Polinomios de interpolación de Hermite, 47
2.8 Interpolación en dos dimensiones, 50
2.9 Extrapolaciones, 51

Solución de ecuaciones no lineales, 62
3.1 Introducción, 62
3.2 Método de bisección, 63
3.3 Método de la falsa posición y método de la falsa posición modificada, 68
3.4 Método de Newton, 73
3.5 Método de la secante, 77
3.6 Método de sustitución sucesiva, 79
3.7 Método de Bairstow, 82

Integración numérica, 109
4.1 Introducción, 109
4.2 Regla del trapecio, 110
4.3 Regla de 1/3 de Simpson, 115
4.4 Regla de 3/8 de Simpson, 119
4.5 Formulas de Newton-Cotes, 120
4.6 Cuadraturas de Gauss, 123
4.7 Integración numérica con limites infinitos o singularidades, 130
4.8 Integración numérica en un dominio bidimensional, 135

Diferenciación numérica, 155
5.1 Introducción, 155
5.2 Uso del desarrollo de Taylor, 1.56
5.3 Algoritmo genérico para obtener una aproximación por diferencias, 163
5.4 Uso de los operadores de diferencias, 166
5.5 Uso de la diferenciación de los polinomios de interpolación de Newton, 168
5.6 Aproximación de derivadas parciales por diferencias, 171

Álgebra lineal numérica, 184
6.1 Introducción, 184
6.2 Eliminaciones de Gauss y Gauss-Jordan para problemas ideales sencillos, 185
6.3 Pivoteo y eliminación canónica de Gauss, 191
6.4 Problemas sin solución única, 195
6.5 Matrices y vectores, 196
6.6 Inversión de una matriz, 203
6.7 Descomposición LU, 207
6.8 Determinantes, 212
6.9 Problemas mal condicionados, 216
6.10 Solución de N ecuaciones con M incógnitas, 218

Cálculo de valores propios de una matriz, 238
7.1 Introducción, 238
7.2 Método de interpolación, 243
7.3 Método de Householder para una matriz simétrica, 246
7.4 Métodos de potencias, 250
7.5 Iteración QR, 253

Ajuste de curvas, 274
8.1 Introducción, 274
8.2 Regresión lineal, 274
8.3 Ajuste de curvas con un polinomio de orden superior, 278
8.4 Ajuste de curvas mediante una combinación lineal de funciones conocidas, 280

Problemas de ecuaciones diferenciales ordinarias con valor o condición inicial, 289
9.1 Introducción, 289
9.2 Métodos de Euler, 292
9.3 Métodos de Runge-Kutta, 299
9.4 Métodos predictor-corrector, 312
9.5 Más aplicaciones, 321
9.6 EDO rígidas, 329

Problemas de ecuaciones diferenciales con valores en la frontera, 351
10.1 Introducción, 351
10.2 Problemas con valores en la frontera para varillas y láminas, 353
10.3 Algoritmo de solución por medio de sistemas tridiagonales, 358
10.4 Coeficientes variables y retícula con espaciamiento no uniforme en la geometría laminar, 360
10.5 Problemas con valores en la frontera para cilindros y esferas, 364
10.6 Problemas de ecuaciones diferenciales ordinarias no lineales con valores en Ia frontera, 366
10.7 Problemas de valores propios en ecuaciones diferenciales ordinarias, 368
10.8 Análisis de convergencia de los métodos iterativos, 375
10.9 Doblamiento y vibración de una viga, 379

Ecuaciones diferenciales parciales elípticas, 407
11.1 Introducción, 407
11.2 Ecuaciones en diferencias, 409
11.3 Panorama de los métodos de solución para las ecuaciones en diferencias elípticas, 426
11.4 Métodos de relajación sucesiva, 427
11.5 Análisis de convergencia, 433
11.6 Cómo optimizar los parámetros de iteración, 442
11.7 Método implícito de la dirección alternante (IDA), 447
11.8 Métodos de solución directa, 450

Ecuaciones diferenciales parciales parabólicas, 470
12.1 Introducción, 470
12.2 Ecuaciones en diferencias, 471
12.3 Análisis de estabilidad, 478
12.4 Métodos numéricos para problemas parabólicos bidimensionales, 484

Ecuaciones diferenciales hiperbólicas, 489
13.1 Introducción, 489
13.2 Método de características, 491
13.3 Métodos de diferencias (exactas) de primer orden, 495
13.4 Análisis del error por truncamiento, 501
13.5 Esquemas de orden superior, 504
13.6 Esquemas de diferencias en La forma conservativa, 508
13.7 Comparación de métodos mediante ondas de pruebas, 512
13.8 Esquemas numéricos para EDP hiperbólicas no Lineales, 512
13.9 Esquemas de flujo corregido, 516

Apéndices
A Error d las interpolaciones poligonales, 524
B Polinomios de Legendre, 529
C Calculo de diferencias de orden superior con el operador de traslación, 53 1
D Obtención de EDP hiperbólicas unidimensionales para problemas de flujo, 533
E Disminución de la variación total (TVD), 535
F Obtención de las ecuaciones modificadas, 537
G Interpolación con splines cúbicos, 540
H Interpolación transfinita bidimensional, 549
Índice, 565

Enlaces de Descarga

Métodos Numéricos Aplicados Con Software

LIBRO PDF
Español | Autor: Shoichiro Nakamura | 4.3 MB
MD5 Checksum: 47b4463c1122d4e4fcdc32687748baeb (?)
Links: ZomgUpload | Uploading | Minus | Uploaded

Guía de Descarga
Estás en un post que contiene links de descarga. Nuestra sugerencia es que ingreses a los siguientes enlaces guía que hemos preparado para ver cómo descargar de nuestro blog y así evitarte percances o descargas incorrectas. Ten en cuenta lo siguiente:

  • Si no puedes ubicar los links de descarga, clic aquí para mostrarte la ubicación de los enlaces.
  • Si no puedes descargar, o descargaste un archivo erróneo y no propuesto en este post, clic aquí para guiarte en el proceso correcto.
Si te gustan los artículos de Conocimiento Adictivo te sugerimos suscribirte para que estés al tanto de las publicaciones del blog. Recibe nuestros artículos en tu lector RSS o en tu email.

Comparte este artículo


»» 4 comentarios para Unknown :

Responder este hilo
  1. Aca va otro link:www dot 4shared dot com/office/UOqE_qIoce/MetodosNumericosAplicadosConSo.html

Responder este hilo
Responder este hilo

¿Quiere dejarnos un comentario?

Puedes comentar sin registrarte !! Anímate !!

No tienes porque ser Anónimo, puedes usar tu Nombre o Nick. Sino estás registrado usa la opción "Nombre/URL". Con sólo poner tu nombre o nick es suficiente, la caja URL es opcional, déjalo en blanco si deseas. Por otro lado, si estás registrado, eres bienvenido igualmente. Cuando tu comentario esté listo, da click directamente en el botón "Publicar un Comentario". La opción "Vista previa" ha estado presentando inconvenientes.

Importante: "No usen mayúsculas porfavor, pues en el mundo de Internet equivale a gritar"

Observación: Usa emoticones de la siguiente lista:

 
Copyright © Conocimiento Adictivo | Abriendo las Fronteras del Saber | Diseñado por JaszAndre
Subir